

Rapid Assessment on Climate Change Risk CCAI pilot site: Champhone, Savannakhet, Lao PDR

Session 7: Working with climate change data

Southeast Asia START Regional Center

- Background
- Data structure of climate scenario
- Extracting climate change data for further analysis
- Examples from previous case studies: Analysis of climate change for risk assessment – Numerical analysis vs Spatial analysis

- Dynamic downscaling using ECHAM4 GCM A2 and B2 (<u>EC</u>MWF Atmospheric General Circulation Model coupled with University of <u>Ham</u>burg Ocean Circulation Model)
- Global resolution: ~2.8°
- Regional resolution: .22° and rescale to 20x20km
- Temporal resolution: Daily
- Timeframe: 1960-2100
- Coverage
 - Lat. 0-35°N
 - Lon. 90°-112°E

Working with climate change data

Domain coverage and GHG scenarios:

Example of data: Tmax

LAT	LON	D1	D2	D3	D4	D5	D6
18.4	103.6	22.97	23.04	24.38	25.53	25.06	25.57
18.4	103.8	23.33	23.48	24.68	25.85	25.34	25.73
18.2	103.6	23.26	23.43	24.87	25.97	25.41	25.97
18.2	103.8	23.17	23.31	24.58	25.79	25.24	25.60

Working with climate change data

Data represents centroid of the grids

Data to be distributed to users in smaller domain of focus:

- Watershed
- Administrative boundary
- Freehand selection

Climate data for distribution

- Daily maximum temperature (° C)
- Daily minimum temperature (° C)
- Daily precipitation (mm)
- Solar radiation (watt/m²)
- Wind speed (m / sec)
- Wind direction (degree from north)
- Relative humidity (in conversion process)

Available in text file format for ease of use

Each file = 1 variable / 1 year

Total data size (A2/B2) approx. 100GB

Working with climate change data

	Variables
TX 960 ECHAM4 A2_rescale_v3	TX= Maximum temperature TN= Minimum temperature
TX1961_ECHAM4_A2_rescale_v3	PC = Precipitation SL= Solar radiation
TX1965_ECHAM4_A2_rescale_v3	_ GCM data
	Year
TX1900_ECHAM4_A2_rescale_v3	TN1960_ECHAM4_A2_rescale_v3
TX1968_ECHAM4_A2_rescale_v3	TN1962_ECHAM4_A2_rescale_v3 TN1963_ECHAM4_A2_rescale_v3 TN1964_ECHAM4_A2_rescale_v3 TN1964_ECHAM4_A2_rescale_v3
	TN1965_ECHAM4_A2_rescale_v3 TN1966_ECHAM4_A2_rescale_v3 TN1967_ECHAM4_A2_rescale_v3 TN1967_ECHAM4_A2_rescale_v3
	TN1968_ECHAM4_A2_rescale_v3 PC1988_ECHAM4_A2_rescale_v4 PC1989_ECHAM4_A2_rescale_v4

TN1970_ECHAM4_A2_rescale_v3

- Temporal resolution: Daily
- 360 days in each simulated year
- 30 days in each simulated month

"LAT", "LON"	,"D1","D2","D3","D4","D5","D6","D7","D8","D9",
38.2,98.6,-	21.0140,-19.8140,-17.3610,-19.9930,-20.7420,-:
38.2,98.8,-	20.7140,-19.6720,-17.1150,-19.7070,-20.3200,-1
38.2,99.0,-	20.6810,-19.7480,-17.0590,-19.5990,-20.2500,-1
38.2,99.2,-	20.9170,-19.9790,-17.2790,-19.7560,-20.5230,-1
38.2,99.4,-	21.1850,-20.1800,-17.5910,-20.0130,-20.8860,-2
38.2,99.6,-	20.4210,-19.7310,-16.9030,-19.3700,-20.3220,-1
38.2,99.8,-	19.2230,-19.0240,-15.8510,-18.3730,-19.2840,-1
38.2,100.0,	-17.9770,-17.9880,-14.7490,-17.3480,-18.1250,-

• Spatial resolution: 0.2 degree (in latitude /longitude) approximately 20 x 20 km

Data structure of climate scenario

"LAT", "LON", "D1", "D2", "D3" 38.2, 98.6, -21.0140, -19.814 38.2, 98.8, -20.7140, -19.672 38.2, 99.0, -20.6810, -19.748 38.2, 99.2, -20.9170, -19.979 38.2, 99.4, -21.1850, -20.180 38.2, 99.6, -20.4210, -19.731 38.2, 99.8, -19.2230, -19.024 38.2, 100.0, -17.9770, -17.98

D3"	Convert Text to Colur	nns Wizard - Step 2 of 3	D17", "D18", "D19", "I
314 572 748 979 180 731 024 .98	This screen lets you set the preview below. Delimiters Tab Semicolon Comma Space Qther: Data greview	t the delimiters your data contains. You can see how your text is affected in Treat consecutive delimiters as one Text gualifier:	<pre>,-17.7160,-19.8380,- ,-17.4970,-19.6270,- ,-17.5290,-19.6950,- ,-17.8410,-20.0500,- ,-18.1970,-20.4580,- ,-17.5030,-19.8190,- ,-16.3260,-18.7420,- 0,-15.0690,-17.5800,</pre>

	Α	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	0	Р	Q	R	S	Т	U
1	LAT	LON	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16	D17	D18	D19
2	38.2	98.6	-21.01	-19.81	-17.36	-19.99	-20.74	-19.73	-20.29	-19.06	-17.5	-16.82	-17.72	-19.84	-20.35	-21.02	-19.73	-21.55	-21.88	-18.99	-15.03
3	38.2	98.8	-20.71	-19.67	-17.12	-19.71	-20.32	-19.47	-20.12	-18.77	-17.24	-16.45	-17.5	-19.63	-20.17	-20.74	-19.47	-21.34	-21.59	-19.08	-14.75
4	38.2	99	-20.68	-19.75	-17.06	-19.6	-20.25	-19.45	-20.15	-18.7	-17.28	-16.41	-17.53	-19.7	-20.28	-20.76	-19.39	-21.29	-21.57	-19.06	-14.78
5	38.2	99.2	-20.92	-19.98	-17.28	-19.76	-20.52	-19.75	-20.45	-18.98	-17.62	-16.72	-17.84	-20.05	-20.68	-21.07	-19.62	-21.55	-21.87	-19.28	-15.18
6	38.2	99.4	-21.19	-20.18	-17.59	-20.01	-20.89	-20.17	-20.85	-19.45	-18.03	-17.13	-18.2	-20.46	-21.15	-21.43	-19.99	-21.95	-22.27	-19.67	-15.67
7	38.2	99.6	-20.42	-19.73	-16.9	-19.37	-20.32	-19.67	-20.35	-18.99	-17.37	-16.54	-17.5	-19.82	-20.54	-20.81	-19.33	-21.36	-21.63	-18.86	-15.06
8	38.2	99.8	-19.22	-19.02	-15.85	-18.37	-19.28	-18.76	-19.4	-18.05	-16.26	-15.47	-16.33	-18.74	-19.51	-19.76	-18.29	-20.32	-20.57	-18.16	-14.08
9	38.2	100	-17.98	-17.99	-14.75	-17.35	-18.13	-17.72	-18.36	-17.27	-15.04	-14.3	-15.07	-17.58	-18.37	-18.6	-17.15	-19.18	-19.42	-17.9	-12.98
10	38.2	100.2	-16.02	-16.16	-12.97	-15.63	-16.23	-15.85	-16.16	-15.13	-12.72	-12.05	-12.78	-15.83	-16.68	-16.81	-15.37	-17.34	-17.51	-16.84	-11.17
11	38.2	100.4	-12.78	-13.3	-10.01	-12.64	-13.13	-12.59	-11.94	-10.29	-8.511	-7.958	-8.663	-13.09	-14.12	-13.97	-12.52	-14.31	-14.34	-13.74	-8.216
											· · · - ·										

Selecting data from relevant grids(s) for further analysis

- Selecting data from multiple grids for area analysis (large area – using GIS tool to select data)
- Selecting data from selected grid(s) for analysis (small area – hand pick grid(s) to select data based on lat./lon. coordinate)

How to conduct climate change risk assessment with limited dataset

Grid data – Savannakhet province Using GIS tool to select grids

Weighting data from partial grid

Whole Area

1.Calculate total area of study area
 Total area: 21408 square kilometers.
 2.Calculate area of each grid
 3.Calculate percentage area of each grid

Selecting 1-2 grids to represent small area – Champone district

Selecting data from desired grid using data selection utility

Form1	
Select file contained boundary file names:	Variable: Year from: Suffix with file extension:
	pen PC 1980 _ECHAM4_A2.txt
Select path of dataset:	to 2009
Select path of boundary files (*.csv):	
Output folder:	Status Run
	(17.2, 17.2, 17.2, 17.2, 17.2, 17.2, 104.8) (17.2, 105.2) (17.2, 105.4) (17.2, 105.6)

А В Selecting data from desired grid using data selection ut 16.6 102 2 16.6 102.2 3 16.6 102.44 16.6 102.6 Grid Split Sample 5 16.6 102.8 Microsoft Office Excel Comma .. WindowsApplication 1 6 16.6 103 SANGMANEE 2 KB 7 16.6 103.2 8 16.6 103.4 Sample index file 9 16.6 103.6 Text Document -10 16.6 103.8 1 KB11 16.8 101.8 12 16.8 102 13 16.8 102.2 14 16.8 102.4 Sample index file - Noter 🖶 Form1 File Edit Format View Help Sample Variable: Year from: Suffix with file extension: Select file contained boundary file names: ECHAM4_A2.txt PC 1980 Open to Select path of dataset: 2009 Open Select path of boundary files (*.csv): Status Run Output folder:

CC Distribution <u>http://cc.start.or.th/</u>

Climate Change Data Distribution System

ยินดีต้อนรับสู่ระบบบริการข้อมูลการคาดการณ์สภาพภูมิอากาศอนาคตสำหรับพื้นที่เอเชียตะวันออกเฉียงใต้ ระบบนี้เป็นความร่วมมือทางวิชาการระหว่างศูนย์เครือข่ายงานวิเคราะหวิจัย และ ฝึกอบรมการเปลี่ยนแปลงของโลกแห่งภูมิภาคเอเชียตะวันออกเฉียงใต้และบริษัทอีเอสอาร์ไอ (ประเทศไทย) จำกัด โดยการสนับสนุน ของสำนักพัฒนาบัณฑิตศึกษาและวิจัย ด้าน วิทยาศาสตร์และเทคโนโลยี (สบว.) ข้อมูลการคาดการณ์สภาพภูมิอากาศอนาคตที่เผยแพร่นี้เป็นผลจากโครงการพัฒนาขีดความสามารถในการวิจัยโดยการสนับสนุนของ Asia- Pacific Network for Global Change Research (APN) ภายใต้โครงการ CAPaBLE Project "Climate Change in Southeast Asia and Assessment on Impact, Vulnerability and Adaptation on Rice Production and Water Resource" และ โครงการวิจัย "การจำลองสภาพภูมิอากาศอนาคตสำหรับประเทศไทยและพื้นที่ข้างเคียง" ภายใต้ การสนับสนุนของ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และได้รับการสนับสนุนด้านเทคนิคจาก The Met Office Hadley Centre for Climate Prediction and Research แห่ง ประเทศอังกฤษ โดยการ ฝึกอบรม การจัดหา Software <u>PRECIS</u> regional climate model และข้อมูลที่จำเป็นในการดำเนินการ

Welcome to climate change data distribution system. This website is collaboration between Southeast Asia START Regional Center and ESRI (Thailand), Co., Ltd., under support from S&T Postgraduate Education and Research Development Office (PERDO). The future climate projection data is result of capacity building program supported by Asia-Pacific Network for Global Change Research (APN) under CAPaBLE project "Climate Change in Southeast Asia and Assessment on Impact, Vulnerability and Adaptation on Rice Production and Water Resource" and research project "Simulation of Future Climate Scenario for Thailand and Surrounding Countries", which was supported by Thailand Research Fund (TRF). The Met Office Hadley Centre for Climate Prediction and Research of United Kingdom provides technical support on know-how transfer, including training and providing of regional climate model software, <u>PRECIS</u>, as well as GCM dataset for regional downscaling operation.

<u>View Future Climate Display System</u> | Data Distribution System English | ภาษาไทย

Domain coverage: Lat. 0 - 35ºN / Lon. 90ºE - 112ºE

SEA START RC copyright 2010

Using climate change data to analyze change in future trend

CHANGE IN ANNUAL PRECIPITATION

Year	A2	B2	
2010	2560	3616	
2011	2967	3246	
2012	1588	2353	
2013	3155	2253	
2014	1976	2853	
2015	3379	2872	
2016	2027	3973	
2017	2210	2367	
2018	2525	2721	
2019	2104	2465	
2020	2316	2583	
2090	2013	3104	
2091	2400	2530	
2092	1328	2627	
2093	2397	1870	
2094	2793	1952	
2095	3594	2765	
2096	2940	2342	
2097	1989	3377	
2098	2539	2856	
2099	2142	2428	

CHANGE IN ANNUAL PRECIPITATION – EXTREME YEAR VS MEDIAN YEAR

CHANGE IN FREQUENCY OF HEAVY RAINFALL YEAR OVER THE DECADE

1995		2391
1996	<	2879
1997	<	2934
1998	<	2653
1999	\leq	2563
2000		2680
2001		2178
2002		1925
2003		2011
2004	\langle	2498
Average	\langle	2471

Svannakhet	2040s
1	3726
2	2447
3	2522
4	2282
5	2518
6	2535
7	3286
8	2685
9	3401
10	2789

CHANGE IN FREQUENCY OF HEAVY RAINFALL YEAR OVER THE DECADE

Time	Number of years which annual rainfall higher than average annual rainfall in Baseline period
Baseline	6
2020s	8
2030s	6
2040s	8

SHIFT AND CHANGE IN RAINFALL DISTRIBUTION PATTERN/RAINY SEASON

CHANGE IN TREND OF TEMPERATURE: 3-MONTH AVERAGE MAXIMUM TEMPERATURE

CHANGE IN TEMPERATURE – NIGHT-TIME & DAYTIME

CHANGE IN LENGTH OF SUMMER / WINTER - SAVANNAKHET

2045-2064

Climate change risk map from previous case study

Climate Change in Chi-Mun

Minimum temperature

Climate Change in Chi-Mun

Change in number of hot days

แดรราชสีมา จำนวนวันในรอบปีที่มีอุณหภูมิต่ำกว่า 16 องศาเซลเซียส 2050s 1 1 2 2 3 10 10 1 1 2 2 3 3 10 10

(Median Year)

Climate Change in Chi-Mun

Change in number of cool days

Climate Change in Chi-Mun

Change in annual rainfall

Thank you

